A low-temperature structural phase transition in CsPbF_{3}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys.: Condens. Matter 135077
(http://iopscience.iop.org/0953-8984/13/22/305)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.226
The article was downloaded on 16/05/2010 at 13:24

Please note that terms and conditions apply.

A low-temperature structural phase transition in CsPbF_{3}

P Berastegui ${ }^{1}$, S Hull ${ }^{2,4}$ and S-G Eriksson ${ }^{3}$
${ }^{1}$ Department of Inorganic Chemistry, Stockholm University, S-106 91 Stockholm, Sweden
${ }^{2}$ The ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
${ }^{3}$ Studsvik Neutron Research Laboratory, S-611 82 Nyköping, Sweden
E-mail: s.hull@rl.ac.uk

Received 22 March 2001, in final form 20 April 2001

Abstract

The structural behaviour of caesium lead fluoride, CsPbF_{3}, has been investigated as a function of temperature in the range $148(2) \leqslant T(\mathrm{~K}) \leqslant$ 276(2). The presence of a structural phase transition at $\sim 190 \mathrm{~K}$ reported from previous nuclear magnetic resonance measurements (Bouznik V M, Moskvich Yu N and Voronov V N 1976 Chem. Phys. Lett. 37 464) has been confirmed by impedance spectroscopy and powder neutron diffraction studies. The former show that there is no significant discontinuity in the ionic conductivity σ at the transition temperature, only a change in the slope $\mathrm{d} \sigma / \mathrm{d} T$ at $T=185(2) \mathrm{K}$. On cooling, the neutron diffraction data indicate a transition from the cubic perovskite structure $(\operatorname{Pm} \overline{3} m)$ to a rhombohedrally distorted perovskite arrangement (space group $R 3 c$) at $T=187(5) \mathrm{K}$. The transition is discontinuous, with a small volume change $\Delta V / V \sim 0.113(7) \%$. In the low-temperature phase there is clear evidence of parallel displacements of the cations away from the centres of their anion polyhedra, indicative of ferroelectric behaviour. The implications of this finding for the wider topic of structural systematics within perovskite-structured compounds are briefly discussed.

1. Introduction

Of all the crystal structures adopted by inorganic compounds, the perovskite arrangement observed in systems with stoichiometry ABX_{3} is arguably one of the most important. Compounds with this ionic arrangement, or derivatives of it, have been widely studied owing to diverse potential technological applications, which are linked to ferroelectric [1], magnetoresistive [2], high $-T_{c}$ superconducting [3] and ionic conducting [4] properties. As

[^0]illustrated in figure 1 , the 'ideal' cubic perovskite structure is very simple, with the A and B cations in the 1 (b) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ and 1 (a) $0,0,0$ sites of space group $\operatorname{Pm} \overline{3} m$, respectively, and the X anions in the 3 (c) positions at $\frac{1}{2}, 0,0$ etc. The larger A cations are surrounded by twelve anions which form an cuboctahedron, whilst the smaller B species lie at the centre of an octahedron of anions. The crystal structure is then a three-dimensional network of corner-sharing BX_{6} octahedra with the A cations sitting at the centre of a cube formed by eight octahedra. However, as noted by Hyde and Andersson [5], this structure is 'overdetermined' because the only degree of freedom is the cubic unit-cell constant a and, in the hard-sphere model of ionic contacts, it is necessary to simultaneously satisfy the conditions $r_{\mathrm{A}}+r_{\mathrm{X}}=a / \sqrt{2}$ and $r_{\mathrm{B}}+r_{\mathrm{X}}=a / 2$, where r_{i} is the ionic radius of ion i. These requirements are combined in the so-called 'Goldschmidt tolerance factor' $t_{G}=\left(r_{\mathrm{A}}+r_{\mathrm{X}}\right) / \sqrt{2}\left(r_{\mathrm{B}}+r_{\mathrm{X}}\right)$ [6], which, in the ideal case, equals unity. In reality, perovskitestructured compounds are found to adopt the cubic arrangement for $0.97 \lesssim t_{G} \lesssim 1.03$ [7]. For larger values of t_{G} hexagonal structures are preferred, in which there is some degree of edge sharing of the BX_{6} octahedra [5], whilst for lower t_{G}-values there are a number of possibilities, including a correlated tilting of the BX_{6} octahedra, distortions of the octahedral units and cooperative displacements of the B cations away from the centres of the octahedra.

Figure 1. The ideal cubic perovskite structure of an ABX_{3} compound, showing the larger A cation sitting at the centre of a cube of eight corner-sharing BX_{6} octahedra, The cubic lattice parameter a is illustrated.

Systematic studies of the nature of the structural distortions within perovskites [7-14] have largely concentrated on oxide ABO_{3} compounds, since these are more numerous and the most relevant from the technological point of view. In comparison, the fluoride ABF_{3} compounds are less well understood, even though they can be used as 'model' systems for studying the structural and physical properties of oxide perovskites under temperatures and pressures which are difficult to attain experimentally. As an example, the fluoride perovskite NaMgF_{3} has been widely studied [15-17] because it is isoelectronic and isostructural to MgSiO_{3}, which is an important component of the Earth's lower mantle [18]. In addition, fluoride analogues of the ferroelectric oxides BaTiO_{3} and $\mathrm{Pb}\left(\mathrm{Zr}_{1-x} \mathrm{Ti}_{x}\right) \mathrm{O}_{3}(\mathrm{PZT})$ are desirable, since these may have promising dielectric properties for capacitor applications [19]. In this article we describe an impedance spectroscopy and powder neutron diffraction study of the perovskite-related compound CsPbF_{3} below room temperature.

2. Experimental procedure

The polycrystalline sample of CsPbF_{3} was prepared by mixing stoichiometric amounts of CsF and PbF_{2} in a nitrogen-filled dry box. The reactants had previously been dried overnight at $425(5) \mathrm{K}$ in a vacuum oven. The samples were pelletized and then dried at $475(5) \mathrm{K}$ for 2 h to remove any traces of moisture before sintering at $700(3) \mathrm{K}$ for 15 h in a gold tube under dynamic vacuum. Two-terminal measurements of the ionic conductivity were performed using a pelleted sample of $\sim 6 \mathrm{~mm}$ diameter and $\sim 6 \mathrm{~mm}$ length over the temperature range $150 \lesssim T(\mathrm{~K}) \lesssim 300$ in steps of approximately 6 K . The sample was held between spring-loaded platinum contacts in a specially designed cell attached to a closed-cycle refrigerator. Details of this device can be found elsewhere [20]. A PC-controlled Solartron S1260 Frequency Response Analyser determined the conventional $Z-Z^{\prime}$ impedance plot over the frequency range from 0.1 Hz to 10 MHz . The real component of the sample impedance Z_{S} was determined using the program IMMFIT [20]. The powder diffraction experiments were performed on the High Resolution Powder Diffractometer (HRPD) at the ISIS facility, UK [21], with $\sim 6 \mathrm{~g}$ of sample encapsulated inside a thin-walled vanadium cylindrical can. Diffraction data were collected using the backscattering detector bank which provides data over the d-spacing range $0.3<d(\AA)<2.1$ with a resolution $\Delta d / d \sim 5 \times 10^{-4}$. Indexing of the measured d-spacings used the program TREOR-90 [22] and Rietveld profile refinements of the normalized diffraction data were performed using the program TF12LS [23], which is based on the Cambridge Crystallographic Subroutine Library [24].

3. Results

The variation of the ionic conductivity σ of CsPbF_{3} with temperature is illustrated in figure 2 . At temperatures close to ambient, σ is moderately high ($\sim 10^{-4} \Omega^{-1} \mathrm{~cm}^{-1}$), suggesting that the F^{-}are relatively mobile. The nature of this disorder within $\mathrm{PbF}_{2}-\mathrm{MF}, \mathrm{M}=\mathrm{K}^{+}, \mathrm{Rb}^{+}$ and Cs^{+}, systems at elevated temperatures has been reported elsewhere [25, 26]. On cooling, there is no evidence of a discontinuity in σ versus T for CsPbF_{3}, though a change of the slope $\mathrm{d} \sigma / \mathrm{d} T$ occurs at $185(2) \mathrm{K}$. This supports the report of a structural phase transition at $\sim 190 \mathrm{~K}$ on the basis of NMR studies [27].

A preliminary measurement of the diffraction pattern at ambient temperature confirmed the sample to be a cubic perovskite $(P m \overline{3} m)$ with $a=4.80032(1) \AA$. To investigate the structural nature of the transition at $T \sim 190 \mathrm{~K}$ the sample was cooled at $\sim 20 \mathrm{~K} \mathrm{~h}^{-1}$ to 148 K and held at this temperature $(\pm 5 \mathrm{~K})$ for approximately 10 h prior to measurements. A relatively

Figure 2. The variation of the ionic conductivity σ of CsPbF_{3} showing the change in slope $\mathrm{d} \sigma / \mathrm{d} T$ at the phase transition temperature $T=186(4) \mathrm{K}$.
long data collection ($\sim 6 \mathrm{~h}$) was performed at this temperature, in order to collect diffraction data of sufficient statistical quality for structure solution and refinement. The sample was then heated and data collected for $\sim 2 \mathrm{~h}$ at eleven temperatures in the range $148 \leqslant T(\mathrm{~K}) \leqslant 276$. In all cases the temperature stability was better than $\pm 2 \mathrm{~K}$ during the period of data collection. A portion of the diffraction data collected on heating are illustrated in figure 3. There is clear evidence of a structural transition at $\sim 187(5) \mathrm{K}$, in which several of the peaks of the cubic

Figure 3. Evolution of the neutron diffraction pattern collected from CsPbF_{3} at eleven temperatures in the range $148(2) \leqslant T(\mathrm{~K}) \leqslant 276(2)$. The cubic \rightarrow rhombohedral phase transition at $T=187(5) \mathrm{K}$ is clearly visible. The $h k l$ indices of the cubic phase are shown.
$(P m \overline{3} m)$ perovskite phase become split and additional weak reflections appear. The majority of the d-spacings observed in the data collected at $148(2) \mathrm{K}$ could be indexed on the basis of a hexagonal unit cell with $a \approx 6.85 \AA$ and $c \approx 16.12 \AA$. However, as shown in table 1 , a small number of additional peaks were observed and identified as arising from a small fraction of remaining cubic phase. The ratio of the volumes of the unit cells of the hexagonal and cubic modifications indicates that the former contains six formula units. Furthermore, the indices of the reflections for the hexagonal unit cell all satisfy $-h+k+l=3 n$, indicating rhombohedral symmetry. We therefore label the high-temperature cubic and low-temperature rhombohedral phases $c-\mathrm{CsPbF}_{3}$ and $r h-\mathrm{CsPbF}_{3}$, respectively.

Table 1. The d-spacings of the reflections in the range $1.5<d(\AA)<3.5$ observed for CsPbF_{3} at $T=148(2) \mathrm{K}$. The calculated positions of the peaks from the rhombohedral $r h-\mathrm{CsPbF}_{3}(R 3 c)$ and cubic $c-\mathrm{CsPbF}_{3}(\operatorname{Pm} \overline{3} m)$ phases are listed, together with their $h k l$ indices.

Measured$d_{o b s}(\AA)$	$\begin{gathered} r h-\mathrm{CsPbF}_{3}(R 3 c) \\ a=6.84993(6) \AA, c=16.1205(1) \AA \end{gathered}$		$\begin{gathered} c-\mathrm{CsPbF}_{3}(P m \overline{3} m) \\ a=4.7748(2) \AA \end{gathered}$	
	$d_{\text {calc }}(\AA)$	$h k l$	$d_{\text {calc }}(\AA)$	$h k l$
3.425	3.425	$2 \overline{1} 0$		
3.371			3.375	011
3.335	3.334	104		
2.888	2.888	$2 \overline{1} 3$		
2.784	2.783	202		
2.686	2.687	006		
2.389	2.389	$20 \overline{4}$	2.387	002
2.221	2.221	311		
2.161	2.160	$3 \overline{1} 2$		
2.114	2.114	216		
1.977	1.977	300		
1.959	1.959	314		
1.908	1.908	$10 \overline{8}$		
1.840	1.841	$3 \overline{1} 5$		
1.712	1.712	$4 \overline{2} 0$		
1.686			1.688	022
1.666	1.667	208		
1.637	1.637	$4 \overline{1} 1$		
1.612	1.612	$4 \overline{1} 2$		
1.606	1.607	$3 \overline{17}$		
1.592	1.593	306	1.591	122/003
1.586	1.587	$2 \overline{19}$		
1.555	1.556	1010		
1.523	1.523	$4 \overline{1} \overline{4}$		

There are seven rhombohedral space groups, $R 3, R \overline{3}, R 32, R 3 m, R \overline{3} m, R 3 c$ and $R \overline{3} c$. In principle, the latter two can be distinguished from the rest on the basis of the observed reflection conditions [28]. However, several of the peaks arising from the distortions from the cubic aristotype structure are inherently weak and it is not wholly reliable to assign a space group according to the presence (or absence) of a small number of weak reflections, especially in the presence of a second minority phase. We therefore adopt the most general approach and attempt to fit the data using each space group in turn. One exception is $R \overline{3}$, since it cannot be used to describe a perovskite-type arrangement which retains connectivity of the octahedra as they are rotated or distorted [10]. In the case of $R \overline{3} m$, the only deformation allowed is the
flattening or elongation of the octahedra along the threefold axis if the axial ratio c / a differs from the ideal value of $\sqrt{6}$. In space groups $R 3 c, R 3 m$ and $R 3$ the octahedra may additionally distort in a manner which retains the threefold axis but allows the sizes of the two triangular faces of the octahedra above and below the B cation along the c-axis to differ in size. Rotation of the anions about the threefold axis is allowed in space groups $R 3, R 32, R 3 c$ and $R \overline{3} c$. In the first two cases the faces above and below the B cation rotate in opposite directions and the octahedra become heavily distorted whilst in the latter two space groups the two faces rotate in the same direction and the octahedra tilts as a rigid unit. Finally, in the polar space groups $R 3, R 3 m$ and $R 3 c$ the cations are allowed to independently shift up and down the threefold axis away from the centres of their polyhedra.

In assessing the relative quality of fits to the experimental data using different structural models, the usual χ^{2} statistic is used, defined by

$$
\chi^{2}=\sum_{N_{d}} \frac{\left(I_{o b s}-I_{\text {calc }}\right)^{2}}{\left(\sigma I_{o b s}\right)^{2}} /\left(N_{d}-N_{p}\right)
$$

N_{d} is the number of data points used in the fit and N_{p} is the number of fitted parameters. $I_{o b s}$ and $I_{\text {calc }}$ are the observed and calculated intensities, respectively, and $\sigma I_{o b s}$ is the estimated standard deviation on $I_{\text {obs }}$, derived from the counting statistics. The values of χ^{2} obtained by fitting each model are summarized in table 2. A good fit is achieved using space group $R \overline{3} c$, though a significant improvement in χ^{2} is obtained by lowering the symmetry to $R 3 c$. The values of the structural parameters obtained by fitting the data using this model are listed in table 3 and the quality of the fit to the experimental data is illustrated in figure 4 . The extent of the structural distortions within the low-temperature $r h-\mathrm{CsPbF}_{3}$ phase is illustrated in figure 5. The rotation of the PbF_{6} octahedra in $r h-\mathrm{CsPbF}_{3}$ is relatively modest $\left(\omega \sim 9^{\circ}\right)$ and, as a consequence, the coordination around the Cs^{+}is still essentially twelvefold, with $\mathrm{Cs}^{+}-\mathrm{F}^{-}$

Figure 4. Time-of-flight least-squares refinement of the neutron diffraction data collected from CsPbF_{3} at $T=148(2) \mathrm{K}$. The dots are the experimental data points and the solid line is the calculated profile, with the parameters listed in table 3 . The lower trace is the difference (observed minus calculated) divided by the estimated standard deviation on the experimental data points. The tick marks denote the calculated positions of the reflections from the rhombohedral $r h-\mathrm{CsPbF}_{3}$ (upper) and cubic $c-\mathrm{CsPbF}_{3}$ (lower) phases.

Table 2. The values of the goodness-of-fit statistic χ^{2} obtained by fitting the diffraction data collected from CsPbF_{3} at $T=148(2) \mathrm{K}$ using the six possible rhombohedral space groups. * denotes that the fit failed to converge satisfactorily due to excessive shifts in the positional parameters.

Rhombohedral space group	χ^{2}
$R 3$ (No 146)	8.53
$R 32$ (No 155)	9.37
$R 3 m$ (No 160)	11^{*}
$R 3 c$ (No 161)	2.92
$R \overline{3} m$ (No 166)	11.30
$R \overline{3} c$ (No 167)	4.54

Table 3. The parameters obtained by fitting the diffraction data collected from CsPbF_{3} at $T=148$ (2) K.

Phase	$r h-\mathrm{CsPbF}_{3}$	$c-\mathrm{CsPbF}_{3}$
Temperature	$T=148(2) \mathrm{K}$	
Volume fraction	$V_{r h}=91.4(1) \%$	$V_{c}=8.6(1) \%$
Space group	$R 3 \mathrm{c}$	Pm $\overline{3} m$
Lattice parameters	$\begin{aligned} & a=6.84993(6) \AA \\ & c=16.1205(1) \AA \end{aligned}$	$a=4.7748(2) \AA$
Unit-cell volume	$V=655.063(7) \AA^{3}$	$V=108.864(5) \AA^{3}$
Volume per formula unit	$V / Z=109.177(2) \AA^{3}$	$V / Z=108.864(5) \AA^{3}$
Ionic positions	$\begin{aligned} & \mathrm{Cs}^{+} \text {in } 6(\mathrm{a}) 0,0, z_{\mathrm{Cs}} \\ & z_{\mathrm{Cs}}=0.2428(5) \end{aligned}$	Cs^{+}in 1(b) at $1 / 2,1 / 2,1 / 2$
	Pb^{2+} in 6(a) $0,0, z \mathrm{~Pb}$	Pb^{2+} in 1(a) at $0,0,0$
	$\begin{aligned} & \mathrm{F}^{-} \text {in } 18(\mathrm{~b}) x_{\mathrm{F}}, y_{\mathrm{F}}, z_{\mathrm{F}} \\ & x_{\mathrm{F}}=0.5319(3) \end{aligned}$	F^{-}in 3(c) at $1 / 2,0,0$
	$y_{\mathrm{F}}=-0.0327(4)$	
	$z_{\mathrm{F}}=1 / 4$ (to fix origin)	
Thermal parameters	$\begin{aligned} & B_{\mathrm{Cs}}=0.85(6) \AA^{2} \\ & B_{\mathrm{Pb}}=0.45(4) \AA^{2} \\ & B_{\mathrm{F}}=2.04(5) \AA^{2} \end{aligned}$	$\begin{aligned} & B_{\mathrm{Cs}}=0.7(1) \AA^{2} \\ & B_{\mathrm{Pb}}=0.6(1) \AA^{2} \\ & B_{\mathrm{F}}=1.4(2) \AA^{2} \end{aligned}$
No of data points	$N_{d}=4703$	
No of profile parameters	$N_{p}=7$	
No of structural parameters	$N_{p}=9 \quad N_{p}=4$	
Goodness of fit	$\chi^{2}=2.92$	
Weighted R-factor	$R_{w}=3.45 \%$	
Expected R-factor	$R_{\text {exp }}=2.02 \%$	

distances of $3.10(1) \AA(\times 3), 3.14(1) \AA(\times 3), 3.56(1) \AA(\times 3)$ and $3.76(1) \AA(\times 3)$. The most distinctive structural feature of $r h-\mathrm{CsPbF}_{3}$ is the c / a ratio (2.35338(2)) being significantly lower than its ideal value of $\sqrt{6}=2.44949$. This corresponds to a marked flattening of the PbF_{6} octahedra along the c-axis, such that there are four different $\mathrm{F}^{-}-\mathrm{F}^{-}$distances of $3.141(6) \AA(\times 3), 3.336(8) \AA(\times 3), 3.402(8) \AA(\times 3)$ and $3.805(9) \AA(\times 3)$. The displacements of the Cs^{+}and Pb^{2+} away from the centres of their polyhedra along the c-axis are $0.116(8) \AA$ and $0.123(5) \AA$, respectively.

Figure 5. The structure of the low-temperature rhombohedral phase of $r h-\mathrm{CsPbF}_{3}$ at $T=148$ (2) K , showing the rotation of the PbF_{6} octahedra.

4. Discussion

For the perovskite structure, Glazer [9] has considered the tilting of essentially rigid BX_{6} octahedra about the three cubic axes, identified 23 possible tilt systems and derived their space groups. These assignments were confirmed with only minor corrections by Woodward [13], who also show that in 6 of the tilt systems it was necessary to allow small distortions of the octahedra in order to retain connectivity. Recently, Howard and Stokes [14] have addressed the same problem using group theoretical methods and conclude that 8 of the original 23 tilt systems can be discounted on physical grounds because they have a higher symmetry than required by their space group (i.e. the tilts around two different axes are constrained to be of equal magnitude even though there is no physical reason for them to be so). The remaining 15 tilt systems were shown to account for all the reliable published structural data on perovskite-like compounds [7]. In addition, a recent compilation of the structural data for such systems indicates a strong preference for those space groups in which all the A cations are on a single set of symmetry-equivalent positions [7]. Of the seven tilt systems which meet this requirement, the majority of compounds are found to adopt the undistorted cubic $\operatorname{Pm} \overline{3} m$ structure for $t_{G} \sim 1$ and rhombohedral ($R \overline{3} c$) and orthorhombic (Pnma) variants as the magnitude of the tilts increases (i.e. t_{G} decreases). Lattice energy calculations [7] show that the orthorhombic and rhombohedral variants are comparable, though increased ion-ion repulsions
destabilize the latter with respect to the former as the tilt angle increases. In addition, there is a contribution to the stability of the rhombohedral distortion due to Coulomb terms which decrease as the charge of the A cations decreases. If the latter argument is applied to fluoride perovskites (with monovalent A cations), then one would not expect any ABF_{3} rhombohedral compounds. A search of the current literature (using the Inorganic Crystal Structure Database (ICSD)) supports this expectation, with 29 fluoride compounds known in $\operatorname{Pm} \overline{3} m$ symmetry, 12 in Pnma symmetry but none in any of the rhombohedral space groups discussed above. Therefore, to the best of our knowledge, CsPbF_{3} is the first example of a rhombohedrally distorted fluoride perovskite.

In general terms, the greater degree of ionicity of the fluorine bond favours high-symmetry coordinations and so hinders the formation of small off-centre cation displacements which characterize ferroelectric behaviour. Indeed, a recent review by Ravez [19] concluded that the number of ferroelectric fluorides is significantly smaller than the number of oxides, with only six families of compounds of stoichiometries $\mathrm{A}_{2}^{+} \mathrm{B}^{2+} \mathrm{F}_{4}, \mathrm{~A}^{2+} \mathrm{B}^{2+} \mathrm{F}_{4}, \mathrm{~A}^{2+} \mathrm{B}^{3+} \mathrm{F}_{5}$, $\mathrm{A}_{2}^{+} \mathrm{B}^{2+} \mathrm{C}^{3+} \mathrm{F}_{7}, \mathrm{~A}_{3}^{+} \mathrm{B}_{3}^{2+} \mathrm{C}_{2}^{3+} \mathrm{F}_{15}$ and $\mathrm{A}_{5}^{2+} \mathrm{B}_{3}^{3+} \mathrm{F}_{19}$. Clearly, the significantly better fit obtained using $R 3 c$ symmetry over $R \overline{3} c$ indicates the presence of cation displacements in $r h-\mathrm{CsPbF}_{3}$. Confirmation of ferroelectric behaviour requires the measurement of dielectric properties. However, attempts to measure the polarizability within the low-temperature rhombohedral phase proved unsuccessful, due to the high ionic conductivity of the sample (figure 2). Similar difficulties have been reported in the case of $\mathrm{Ag}_{3} \mathrm{SI}$ [29] (which undergoes a rhombohedral distortion of its cubic anti-perovskite structure in space group $R 3$ [30] on cooling below 156 K) due to the high mobility of the Ag^{+}. However, we note that the structural description given in table 3 meets the structural criteria for ferroelectric behaviour given by Abrahams [31], though Ravez [19] found no evidence of ferroelectric fluorides with stoichiometry $\mathrm{A}^{+} \mathrm{B}^{2+} \mathrm{F}_{3}$. Again, CsPbF_{3} appears unique. This is consistent with the structural preference for orthorhombic rather than rhombohedral distortion in fluoride perovskites discussed above and the conclusions of Thomas [12] that orthorhombic perovskites have the capability of showing the appropriate cation displacements to display ferroelectric properties, but this is rarely the case in practice. Instead, the nature of the tilts in the rhombohedral distortion requires the B-ion displacements to be parallel and thus more likely to lead to an overall spontaneous polarization. However, contrary to these remarks, calculations of the lattice energies of numerous ABF_{3} compounds ($\mathrm{A}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; \mathrm{B}=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$) have predicted a transition to a low-temperature rhombohedrally distorted ferroelectric phase in several compounds [32, 33], though these compounds do not exist due to the preferential formation of other phases of different stoichiometries.

Overall, the structural behaviour of CsPbF_{3} is most similar to that of $\mathrm{CsGeCl}_{3}, \mathrm{CsGeBr}_{3}$ and CsGeI_{3} [34], which all undergo transitions from cubic to rhombohedral symmetry at temperatures of $428 \mathrm{~K}, 511 \mathrm{~K}$ and 550 K , respectively [34]. The low-temperature forms all adopt space group R 3 m and thus differ from CsPbF_{3} by the absence of any rotation of the octahedra about the threefold axis (i.e. $\omega=0$). However, they are reported to be ferroelectric [35] and the ionic conductivity of CsGeCl_{3} at the phase transition shows similar behaviour to CsPbF_{3}, with no discontinuity in σ [36]. Interestingly, CsPbF_{3} differs from CsPbCl_{3} [37] and CsPbBr_{3} [38], both of which are cubic perovskite ($\mathrm{Pm} \overline{3} \mathrm{~m}$) structured above 403 K and 320 K , respectively, but undergo several phase transitions at lower temperatures to phases with orthorhombic, tetragonal and monoclinic symmetries [37, 38].

Finally, we turn our attention to the nature of the low-temperature phase transition in CsPbF_{3}. In principle, this can be a continuous transition, as observed in the case of the secondorder $R \overline{3} c \rightarrow P m \overline{3} m$ transition studied recently in LaAlO_{3} at 820 K [39]. For the case of the $R 3 c \rightarrow P m \overline{3} m$ transition within CsPbF_{3}, this would require $c / a \rightarrow \sqrt{6}, z_{\mathrm{Cs}} \rightarrow 1 / 4$,
$z_{\mathrm{Pb}} \rightarrow 0, x_{\mathrm{F}} \rightarrow 1 / 2$ and $y_{\mathrm{F}} \rightarrow 0$, such that the octahedral rotation angle $\omega \rightarrow 0^{\circ}$. Indeed, the behaviour of the ionic conductivity (figure 2) implies that the transition in CsPbF_{3} is continuous. However, as illustrated for c / a and ω in figure 6 , this is not the case in CsPbF_{3} and there is a clear discontinuity in the structural behaviour at the transition temperature. Subsequent measurements in which the sample was cooled more rapidly ($\sim 3 \mathrm{~K} \mathrm{~min}^{-1}$) from room temperature to $T=2.3(5) \mathrm{K}$ gave a diffraction pattern consistent with the rhombohedral structure (see figure 7) but with extremely broad reflections. This is consistent with the formation of small rhombohedral domains. This observation, together with the coexistence of

Figure 6. The variation with temperature of the unit-cell parameter ratio c / a and the angle ω describing the tilt of the PbF_{6} octahedra about the pseudocubic axis.

Figure 7. A portion of the neutron diffraction pattern collected from $r h-\mathrm{CsPbF}_{3}$ at $T=2.3(5) \mathrm{K}$. The tick marks denote the calculated positions of the reflections from a rhombohedral unit cell (with $a \sim 6.842 \AA$ and $c=15.976 \AA$).
rhombohedral and cubic phases at temperatures close to the transition, indicates that kinetic effects play a significant role in the formation of the $r h-\mathrm{CsPbF}_{3}$ phase and will require more detailed future studies.

5. Conclusions

The above discussion illustrates the unique nature of the low-temperature phase of CsPbF_{3}, where the off-centre displacements presumably arise due to the electronic structure of Pb^{2+}. The structural characterization of the cubic-to-rhombohedral phase transition at $T=186$ (4) K reported in this paper forms the motivation for further studies of its dielectric properties and the nature of its bonding character.

Acknowledgments

One of the authors (PB) wishes to thank the Swedish Foundation for International Cooperation in Research and Higher Education for financial support. We are grateful to R M Ibberson for his assistance with the neutron diffraction studies and to N J G Gardner for the development of the complex impedance spectroscopy apparatus.

References

[1] Shirane G, Danner H and Pepinski R 1957 Phys. Rev. 105856
[2] Hwang H Y, Cheong S-W, Radaelli P G, Marezio M and Batlogg B 1995 Phys. Rev. Lett. 75914
[3] Cava R J, van Dover R B, Batlogg B and Rietman E A 1987 Phys. Rev. Lett. 58408
[4] Nowick A S and Du Y 1995 Solid State Ion. 77137
[5] Hyde B G and Andersson S 1989 Inorganic Crystal Structures (New York: Wiley-Interscience)
[6] Goldschmidt V M 1926 Naturwissenschaften 14477
[7] Woodward P M 1997 Acta Crystallogr. B 5344
[8] Michel C, Moreau J M and James W J 1971 Acta Crystallogr. B 27501
[9] Glazer A M 1972 Acta Crystallogr. B 283384
[10] Megaw H D and Darlington C N W 1975 Acta Crystallogr. A 31161
[11] Thomas N W and Beitollahi A 1994 Acta Crystallogr. B 50549
[12] Thomas N W 1996 Acta Crystallogr. B 5216
[13] Woodward P M 1997 Acta Crystallogr. B 5332
[14] Howard C J and Stokes H T 1998 Acta Crystallogr. B 54782
[15] Andersen N H, Kjems J K and Hayes W 1985 Solid State Ion. 17143
[16] Zhou L X, Hardy J R and Cao H Z 1997 Geophys. Res. Lett. 24747
[17] Street J N, Wood I G, Knight K S and Price G D 1997 J. Phys.: Condens. Matter 9 L647
[18] O'Keeffe M and Bovin J-O 1979 Science 206599
[19] Ravez J 1997 J. Physique III 71129
[20] Gardner N J G, Hull S, Keen D A and Berastegui P 1998 Rutherford Appleton Laboratory Report RAL-TR-1998-032
[21] Ibberson R M, David W I F and Knight K S 1992 Rutherford Appleton Laboratory Report RAL-92-031
[22] Werner P-E, Eriksson L and Westdahl M 1985 J. Appl. Crystallogr. 18367
[23] David W I F, Ibberson R M and Matthewman J C 1992 Rutherford Appleton Laboratory Report RAL-92-032
[24] Brown P J and Matthewman J C 1987 Rutherford Appleton Laboratory Report RAL-87-010
[25] Hull S, Berastegui P, Eriksson S G and Gardner N J G 1998 J. Phys.: Condens. Matter 108429
[26] Hull S and Berastegui P 1999 J. Phys.: Condens. Matter 115257
[27] Bouznik V M, Moskvich Yu N and Voronov V N 1976 Chem. Phys. Lett. 37464
[28] International Tables for Crystallograllography 1996 vol A, ed T Hahn (Dordrecht: Kluwer)
[29] Hoshino S, Fujishita H, Takashige M and Sakuma T 1981 Solid State Ion. 3+4 35
[30] Hull S, Keen D A, Gardner N J G and Hayes W 2001 J. Phys.: Condens. Matter 132295
[31] Abrahams S C 1988 Acta Crystallogr. B 44585
[32] Edwardson P J, Boyer L L, Newman R L, Fox D H, Hardy J R, Flocken J W, Guenther R A and Mei W 1989 Phys. Rev. B 399738
[33] Allan N L, Dayer M J, Kulp D T and Mackrodt W C 1991 J. Mater. Chem. 11035
[34] Thiele G, Rotter H W and Schmidt K D 1987 Z. Anorg. Allg. Chem. 545148
[35] Christensen A N and Rasmussen S E 1965 Acta Chem. Scand. 19421
[36] Yamada K, Isobe K, Okuda T and Furukawa Y 1994 Z. Naturf. a 49258
[37] Fujii Y, Hoshino S, Yamada Y and Shirane G 1974 Phys. Rev. B 94549
[38] Sharma S, Weiden N and Weiss A 1991 Z. Naturf. a 46329
[39] Howard C J, Kennedy B J and Chakoumakos B C 2000 J. Phys.: Condens. Matter 12349

[^0]: 4 Author to whom any correspondence should be addressed. Telephone: +44 1235 446628; fax: +44 1235445720 .

